Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 974
Filtrar
1.
J Virol ; 96(5): e0206221, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019711

RESUMO

The multifunctional adenoviral E1B-55K phosphoprotein is a major regulator of viral replication and plays key roles in virus-mediated cell transformation. While much is known about its function in oncogenic cell transformation, the underlying features and exact mechanisms that implicate E1B-55K in the regulation of viral gene expression are less well understood. Therefore, this work aimed to unravel basic intranuclear principles of E1B-55K-regulated viral mRNA biogenesis using wild-type human adenovirus C5 (HAdV-C5) E1B-55K, a virus mutant with abrogated E1B-55K expression, and a mutant that expresses a phosphomimetic E1B-55K. By subnuclear fractionation, mRNA, DNA, and protein analyses as well as luciferase reporter assays, we show that (i) E1B-55K promotes the efficient release of viral late mRNAs from their site of synthesis in viral replication compartments (RCs) to the surrounding nucleoplasm, (ii) E1B-55K modulates the rate of viral gene transcription and splicing in RCs, (iii) E1B-55K participates in the temporal regulation of viral gene expression, (iv) E1B-55K can enhance or repress the expression of viral early and late promoters, and (v) the phosphorylation of E1B-55K regulates the temporal effect of the protein on each of these activities. Together, these data demonstrate that E1B-55K is a phosphorylation-dependent transcriptional and posttranscriptional regulator of viral genes during HAdV-C5 infection. IMPORTANCE Human adenoviruses are useful models to study basic aspects of gene expression and splicing. Moreover, they are one of the most commonly used viral vectors for clinical applications. However, key aspects of the activities of essential viral proteins that are commonly modified in adenoviral vectors have not been fully described. A prominent example is the multifunctional adenoviral oncoprotein E1B-55K that is known to promote efficient viral genome replication and expression while simultaneously repressing host gene expression and antiviral host responses. Our study combined different quantitative methods to study how E1B-55K promotes viral mRNA biogenesis. The data presented here propose a novel role for E1B-55K as a phosphorylation-dependent transcriptional and posttranscriptional regulator of viral genes.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Transformação Celular Viral , Regulação Viral da Expressão Gênica , Proteínas Virais , Infecções por Adenovirus Humanos/fisiopatologia , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Transformação Celular Viral/genética , Humanos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Virais/metabolismo
2.
Viruses ; 14(1)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062342

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL), an aggressive and fatal CD4+ T-cell malignancy, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neurological disease. Disease progression in infected individuals is the result of HTLV-1-driven clonal expansion of CD4+ T-cells and is generally associated with the activities of the viral oncoproteins Tax and Hbz. A closely related virus, HTLV-2, exhibits similar genomic features and the capacity to transform T-cells, but is non-pathogenic. In vitro, HTLV-1 primarily immortalizes or transforms CD4+ T-cells, while HTLV-2 displays a transformation tropism for CD8+ T-cells. This distinct tropism is recapitulated in infected people. Through comparative studies, the genetic determinant for this divergent tropism of HTLV-1/2 has been mapped to the viral envelope (Env). In this review, we explore the emerging roles for Env beyond initial viral entry and examine current perspectives on its contributions to HTLV-1-mediated disease development.


Assuntos
Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Internalização do Vírus , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Transformação Celular Viral/genética , Produtos do Gene tax/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 2 Humano/genética , Humanos , Oncogenes
3.
Oral Dis ; 28(8): 2230-2238, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34060687

RESUMO

OBJECTIVE: The aim of this study was to evaluate and compare alterations in gene expression using two distinct immortalization methods (hTERT and HPV16-E6/E7) in ameloblastoma cell lines. MATERIALS AND METHODS: A primary cell culture derived from human ameloblastoma (AME-1) was established and immortalized by two different methods using a transfection processes to hTERT and HPV-E6/E7. The RNA-seq was used to verify which immortalization method had less influence on gene expression. It was performed in four steps: extraction and collection of mRNA, PCR amplification, comparison with the human reference genome, and analysis of differential expression. The genes with differentiated expression were identified and mapped. RESULTS: RNA-seq revealed genetic alterations in ameloblastoma cell lines after the immortalization process, including increased expression of tumor genes like MYC, E2F1, BRAF, HRAS, and HTERT, and a decrease in tumor suppressor genes like P53, P21, and Rb. CONCLUSIONS: It is possible to affirm that cell immortalization is not an inert method regarding gene regulation mechanisms and the hTERT method (AME-TERT) presented fewer changes in gene expression levels.


Assuntos
Ameloblastoma , Proteínas Oncogênicas Virais , Humanos , Ameloblastoma/genética , Linhagem Celular , Transformação Celular Viral/genética , Expressão Gênica , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
mBio ; 12(5): e0109721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488443

RESUMO

The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.


Assuntos
Regulação da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , NF-kappa B/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteínas da Matriz Viral/genética , Apoptose , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Viral/genética , Humanos , Proteína Sequestossoma-1/genética , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo , Latência Viral
5.
J Virol ; 95(15): e0013121, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011541

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus of chickens that causes lymphomas in various organs. Most MDV genes are conserved among herpesviruses, while others are unique to MDV and may contribute to pathogenesis and/or tumor formation. High transcript levels of the MDV-specific genes MDV082, RLORF11, and SORF6 were recently detected in lytically infected cells; however, it remained elusive if the respective proteins are expressed and if they play a role in MDV pathogenesis. In this study, we first addressed if these proteins are expressed by inserting FLAG tags at their N or C termini. We could demonstrate that among the three genes tested, MDV082 is the only gene that encodes a protein and is expressed very late in MDV plaques in vitro. To investigate the role of this novel MDV082 protein in MDV pathogenesis, we generated a recombinant virus that lacks expression of the MDV082 protein. Our data revealed that the MDV082 protein contributes to the rapid onset of Marek's disease but is not essential for virus replication, spread, and tumor formation. Taken together, this study sheds light on the expression of MDV-specific genes and unravels the role of the late protein MDV082 in MDV pathogenesis. IMPORTANCE MDV is a highly oncogenic alphaherpesvirus that causes Marek's disease in chickens. The virus causes immense economic losses in the poultry industry due to the high morbidity and mortality, but also the cost of the vaccination. MDV encodes over 100 genes that are involved in various processes of the viral life cycle. Functional characterization of MDV genes is an essential step toward understanding the complex virus life cycle and MDV pathogenesis. Here, we have identified a novel protein encoded by MDV082 and two potential noncoding RNAs (RLORF11 and SORF6). The novel MDV082 protein is not needed for efficient MDV replication and tumor formation. However, our data demonstrate that the MDV082 protein is involved in the rapid onset of Marek's disease.


Assuntos
Transformação Celular Viral/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , Proteínas Virais/genética , Animais , Linhagem Celular , Galinhas/virologia , Aves Domésticas/virologia , Replicação Viral/genética
6.
Front Immunol ; 12: 640918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833760

RESUMO

Epstein Barr virus (EBV) is one of the most successful pathogens in humans with more than 95% of the human adult population persistently infected. EBV infects only humans and threatens these with its potent growth transforming ability that readily allows for immortalization of human B cells in culture. Accordingly, it is also found in around 1-2% of human tumors, primarily lymphomas and epithelial cell carcinomas. Fortunately, however, our immune system has learned to control this most transforming human tumor virus in most EBV carriers, and it requires modification of EBV associated lymphomagenesis and its immune control by either co-infections, such as malaria, Kaposi sarcoma associated herpesvirus (KSHV) and human immunodeficiency virus (HIV), or genetic predispositions for EBV positive tumors to emerge. Some of these can be modelled in humanized mice that, therefore, provide a valuable platform to test curative immunotherapies and prophylactic vaccines against these EBV associated pathologies.


Assuntos
Transformação Celular Viral/imunologia , Coinfecção , Infecções por Vírus Epstein-Barr/imunologia , Linfoma/virologia , Animais , Carcinogênese/imunologia , Transformação Celular Viral/genética , Coinfecção/genética , Coinfecção/imunologia , Coinfecção/virologia , Modelos Animais de Doenças , Herpesvirus Humano 4 , Humanos , Linfoma/genética , Linfoma/imunologia , Camundongos , Vírus Oncogênicos/genética , Vírus Oncogênicos/imunologia
7.
Blood ; 137(23): 3225-3236, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33827115

RESUMO

Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Imunidade Celular , Fosfoproteínas/imunologia , Transativadores/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Linfócitos B/imunologia , Transformação Celular Viral/genética , Transformação Celular Viral/imunologia , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fosfoproteínas/genética , Transativadores/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
8.
J Cancer Res Clin Oncol ; 147(6): 1685-1697, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738544

RESUMO

BACKGROUND/AIMS: A proliferation-inducing ligand (APRIL, also known as TNFSF13, CD256) is a member of the tumor necrosis factor (TNF) superfamily and involved in a diverse set of diseases. In this work, we explored the potential associations and underlying mechanism in patients suffered from gastric cancer between the expression of APRIL and H. pylori infection. METHODS: We analyzed APRIL expression levels in 200 GC tissue samples by immunohistochemistry staining. H. pylori infection was detected by modified Giemsa staining. The biological effects of APRIL on human GC cells in vitro and in vivo were tested by CCK-8 assay, colony formation, flow cytometry detection, transwell migration assay, matrigel invasion assay, and tumor xenograft assay in animals. RESULTS: APRIL reactivity was positively correlated with H. pylori infection in vitro and vivo. It turned out that the decrease of miR-145 expression was dose-dependent and time-dependent on H. pylori infection and in consistent with APRIL expression. MiR-145 significantly attenuated the effect of H. pylori infection on APRIL gene expression in SGC7901 and BGC823 cell lines. Furthermore, APRIL overexpression promoted the proliferation, migration, invasion, and transfer of GC cells and decreased apoptosis, while APRIL knockdown suppressed these effects. We confirmed that APRIL activated the canonical NF-κB pathway through phosphorylation of AKT. CONCLUSION: The expression of APRIL, which promoted the proliferation, migration, invasion, viability, and metastasis of GC cells, was upregulated in human H. pylori-infected GC through miR-145. Besides, APRIL-induced gastric tumorigenicity via activating NF-κB pathway. These results may provide a framework for the deeper analysis of APRIL in GC risk and prognosis.


Assuntos
Adenocarcinoma/genética , Helicobacter pylori/fisiologia , Neoplasias Gástricas/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia , Adenocarcinoma/patologia , Adenocarcinoma/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Viral/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
9.
Virol J ; 18(1): 18, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441159

RESUMO

Viral oncogenic transformation of healthy cells into a malignant state is a well-established phenomenon but took decades from the discovery of tumor-associated viruses to their accepted and established roles in oncogenesis. Viruses cause ~ 15% of know cancers and represents a significant global health burden. Beyond simply causing cellular transformation into a malignant form, a number of these cancers are augmented by a subset of viral factors that significantly enhance the tumor phenotype and, in some cases, are locked in a state of oncogenic addiction, and substantial research has elucidated the mechanisms in these cancers providing a rationale for targeted inactivation of the viral components as a treatment strategy. In many of these virus-associated cancers, the prognosis remains extremely poor, and novel drug approaches are urgently needed. Unlike non-specific small-molecule drug screens or the broad-acting toxic effects of chemo- and radiation therapy, the age of designer nucleases permits a rational approach to inactivating disease-causing targets, allowing for permanent inactivation of viral elements to inhibit tumorigenesis with growing evidence to support their efficacy in this role. Although many challenges remain for the clinical application of designer nucleases towards viral oncogenes; the uniqueness and clear molecular mechanism of these targets, combined with the distinct advantages of specific and permanent inactivation by nucleases, argues for their development as next-generation treatments for this aggressive group of cancers.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/virologia , Vírus Oncogênicos/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Viral/efeitos dos fármacos , Transformação Celular Viral/genética , Humanos , Camundongos , Oncogenes , Vírus Oncogênicos/patogenicidade
10.
Cancer Res ; 81(7): 1909-1921, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500246

RESUMO

Human papillomavirus (HPV) drives high-grade intraepithelial neoplasia and cancer; for unknown reasons, this occurs most often in the cervical transformation zone. Either mutation or HPV E6-driven inhibition of Notch1 can drive neoplastic development in stratified squamous epithelia. However, the contribution of Notch1 and its Delta-like ligands (DLL) to site susceptibility remains poorly understood. Here, we map DLL1/DLL4 expression in cell populations present in normal cervical biopsies by immunofluorescence. In vitro keratinocyte 2D monolayer models, growth assays, and organotypic raft cultures were used to assess the functional role of DLL-Notch signaling in uninfected cells and its modulation by HPV16 in neoplasia. An RNA sequencing-based gene signature was used to suggest the cell of origin of 279 HPV-positive cervical carcinomas from The Cancer Genome Atlas and to relate this to disease prognosis. Finally, the prognostic impact of DLL4 expression was investigated in three independent cervical cancer patient cohorts. Three molecular cervical carcinoma subtypes were identified, with reserve cell tumors the most common and linked to relatively good prognosis. Reserve cells were characterized as DLL1-/DLL4+, a proliferative phenotype that is temporarily observed during squamous metaplasia and wound healing but appears to be sustained by HPV16 E6 in raft models of low-grade and, more prominently, high-grade neoplasia. High expression of DLL4 was associated with an increased likelihood of cervical cancer-associated death and recurrence. Taken together, DLL4-Notch1 signaling reflects a proliferative cellular state transiently present during physiologic processes but inherent to cervical reserve cells, making them strongly resemble neoplastic tissue even before HPV infection has occurred. SIGNIFICANCE: This study investigates cervical cancer cell-of-origin populations and describes a DLL-Notch1 phenotype that is associated with disease prognosis and that might help identify cells that are susceptible to HPV-induced carcinogenesis.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Oncogênicas Virais/fisiologia , Receptor Notch1/fisiologia , Proteínas Repressoras/fisiologia , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/virologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Proliferação de Células/genética , Transformação Celular Viral/genética , Estudos de Coortes , Feminino , Interações Hospedeiro-Patógeno/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Prognóstico , Transdução de Sinais/genética , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/virologia
11.
Cancer Res ; 80(15): 3116-3129, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32518203

RESUMO

Kaposi sarcoma is a tumor caused by Kaposi sarcoma herpesvirus (KSHV) infection and is thought to originate from lymphatic endothelial cells (LEC). While KSHV establishes latency in virtually all susceptible cell types, LECs support spontaneous expression of oncogenic lytic genes, high viral genome copies, and release of infectious virus. It remains unknown the contribution of spontaneous virus production to the expansion of KSHV-infected tumor cells and the cellular factors that render the lymphatic environment unique to KSHV life cycle. We show here that expansion of the infected cell population, observed in LECs, but not in blood endothelial cells, is dependent on the spontaneous virus production from infected LECs. The drivers of lymphatic endothelium development, SOX18 and PROX1, regulated different steps of the KSHV life cycle. SOX18 enhanced the number of intracellular viral genome copies and bound to the viral origins of replication. Genetic depletion or chemical inhibition of SOX18 caused a decrease of KSHV genome copy numbers. PROX1 interacted with ORF50, the viral initiator of lytic replication, and bound to the KSHV genome in the promoter region of ORF50, increasing its transactivation activity and KSHV spontaneous lytic gene expression and infectious virus release. In Kaposi sarcoma tumors, SOX18 and PROX1 expression correlated with latent and lytic KSHV protein expression. These results demonstrate the importance of two key transcriptional drivers of LEC fate in the regulation of the tumorigenic KSHV life cycle. Moreover, they introduce molecular targeting of SOX18 as a potential novel therapeutic avenue in Kaposi sarcoma. SIGNIFICANCE: SOX18 and PROX1, central regulators of lymphatic development, are key factors for KSHV genome maintenance and lytic cycle in lymphatic endothelial cells, supporting Kaposi sarcoma tumorigenesis and representing attractive therapeutic targets.


Assuntos
Transformação Celular Viral/genética , Herpesvirus Humano 8/fisiologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição SOXF/fisiologia , Sarcoma de Kaposi/genética , Proteínas Supressoras de Tumor/fisiologia , Replicação Viral/genética , Carcinogênese/genética , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Células HEK293 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Proteínas de Homeodomínio/genética , Humanos , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Sistema Linfático/virologia , Fatores de Transcrição SOXF/genética , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Proteínas Supressoras de Tumor/genética
12.
Cancer Res ; 80(15): 3130-3144, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32518204

RESUMO

Kaposi sarcoma is the most common cancer in human immunodeficiency virus-positive individuals and is caused by Kaposi sarcoma-associated herpesvirus (KSHV). It is believed that a small number of latently infected Kaposi sarcoma tumor cells undergo spontaneous lytic reactivation to produce viral progeny for infection of new cells. Here, we use matched donor-derived human dermal blood and lymphatic endothelial cells (BEC and LEC, respectively) to show that KSHV-infected BECs progressively lose viral genome as they proliferate. In sharp contrast, KSHV-infected LECs predominantly entered lytic replication, underwent cell lysis, and released new virus. Continuous lytic cell lysis and de novo infection allowed LEC culture to remain infected for a prolonged time. Because of the strong propensity of LECs toward lytic replication, LECs maintained virus as a population, despite the death of individual host cells from lytic lysis. The master regulator of lymphatic development, Prox1, bound the promoter of the RTA gene to upregulate its expression and physically interacted with RTA protein to coregulate lytic genes. Thus, LECs may serve as a proficient viral reservoir that provides viral progeny for continuous de novo infection of tumor origin cells, and potentially BECs and mesenchymal stem cells, which give rise to Kaposi sarcoma tumors. Our study reveals drastically different host cell behaviors between BEC and LEC and defines the underlying mechanisms of the lymphatic cell environment supporting persistent infection in Kaposi sarcoma tumors. SIGNIFICANCE: This study defines the mechanism by which Kaposi's sarcoma could be maintained by virus constantly produced by lymphatic cells in HIV-positive individuals.


Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas de Homeodomínio/fisiologia , Vasos Linfáticos/virologia , Sarcoma de Kaposi , Microambiente Tumoral/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Liberação de Vírus/genética , Replicação Viral/genética , Transformação Celular Viral/genética , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Células HEK293 , HIV/fisiologia , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Latência Viral/genética
13.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581093

RESUMO

Marek's disease (MD) is a neoplastic disease of chickens caused by Marek's disease virus (MDV), a member of the subfamily Alphaherpesvirinae Like other alphaherpesviruses, MDV encodes a serine/threonine protein kinase, US3. The functions of US3 have been extensively studied in other alphaherpesviruses; however, the biological functions of MDV US3 and its substrates have not been studied in detail. In this study, we investigated potential cellular pathways that are regulated by MDV US3 and identified chicken CREB (chCREB) as a substrate of MDV US3. We show that wild-type MDV US3, but not kinase-dead US3 (US3-K220A), increases CREB phosphorylation, leading to recruitment of phospho-CREB (pCREB) to the promoter of the CREB-responsive gene and activation of CREB target gene expression. Using US3 deletion and US3 kinase-dead recombinant MDV, we identified US3-responsive MDV genes during infection and found that the majority of US3-responsive genes were located in the MDV repeat regions. Chromatin immunoprecipitation sequencing (ChIP-seq) studies determined that some US3-regulated genes colocalized with Meq (an MDV-encoded oncoprotein) recruitment sites. Chromatin immunoprecipitation-PCR (ChIP-PCR) further confirmed Meq binding to the ICP4/LAT region, which is also regulated by US3. Furthermore, biochemical studies demonstrated that MDV US3 interacts with Meq in transfected cells and MDV-infected chicken embryonic fibroblasts in a phosphorylation-dependent manner. Finally, in vitro kinase studies revealed that Meq is a US3 substrate. MDV US3 thus acts as an upstream kinase of the CREB signaling pathway to regulate the transcription function of the CREB/Meq heterodimer, which targets cellular and viral gene expression.IMPORTANCE MDV is a potent oncogenic herpesvirus that induces T-cell lymphoma in infected chickens. Marek's disease continues to have a significant economic impact on the poultry industry worldwide. US3 encoded by alphaherpesviruses is a multifunctional kinase involved in the regulation of various cellular pathways. Using an MDV genome quantitative reverse transcriptase PCR (qRT-PCR) array and chromatin immunoprecipitation, we elucidated the role of MDV US3 in viral and cellular gene regulation. Our results provide insights into how viral kinase regulates host cell signaling pathways to activate both viral and host gene expression. This is an important step toward understanding host-pathogen interaction through activation of signaling cascades.


Assuntos
Herpesvirus Galináceo 2/enzimologia , Herpesvirus Galináceo 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Alphaherpesvirinae/genética , Animais , Linhagem Celular , Transformação Celular Viral/genética , Galinhas/virologia , Imunoprecipitação da Cromatina , Dosagem de Genes , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Doença de Marek/virologia , Fosforilação , Aves Domésticas , Regiões Promotoras Genéticas , Transdução de Sinais , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Blood ; 136(7): 871-884, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32391874

RESUMO

Adult T-cell leukemia-lymphoma (ATL) is an aggressive hematological malignancy of CD4+ T cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Most HTLV-1-infected individuals are asymptomatic, and only 3% to 5% of carriers develop ATL. Here, we describe the contribution of aberrant DNA methylation to ATL leukemogenesis. HTLV-1-infected T-cells and their uninfected counterparts were separately isolated based on CADM1 and CD7 expression status, and differentially methylated positions (DMPs) specific to HTLV-infected T cells were identified through genome-wide DNA methylation profiling. Accumulation of DNA methylation at hypermethylated DMPs correlated strongly with ATL development and progression. In addition, we identified 22 genes downregulated because of promoter hypermethylation in HTLV-1-infected T cells, including THEMIS, LAIR1, and RNF130, which negatively regulate T-cell receptor (TCR) signaling. Phosphorylation of ZAP-70, a transducer of TCR signaling, was dysregulated in HTLV-1-infected cell lines but was normalized by reexpression of THEMIS. Therefore, we hypothesized that DNA hypermethylation contributes to growth advantages in HTLV-1-infected cells during ATL leukemogenesis. To test this idea, we investigated the anti-ATL activities of OR-1200 and OR-2100 (OR21), novel decitabine (DAC) prodrugs with enhanced oral bioavailability. Both DAC and OR21 inhibited cell growth, accompanied by global DNA hypomethylation, in xenograft tumors established by implantation of HTLV-1-infected cells. OR21 was less hematotoxic than DAC, whereas tumor growth inhibition was almost identical between the 2 compounds, making it suitable for long-term treatment of ATL patient-derived xenograft mice. Our results demonstrate that regional DNA hypermethylation is functionally important for ATL leukemogenesis and an effective therapeutic target.


Assuntos
Antineoplásicos/administração & dosagem , Metilação de DNA/efeitos dos fármacos , Infecções por HTLV-I/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Piridinas/administração & dosagem , Administração Oral , Adulto , Idoso , Animais , Transformação Celular Viral/efeitos dos fármacos , Transformação Celular Viral/genética , Células Cultivadas , Metilação de DNA/genética , Desmetilação/efeitos dos fármacos , Drogas em Investigação/uso terapêutico , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Infecções por HTLV-I/complicações , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
15.
Mol Reprod Dev ; 87(6): 663-665, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424848

RESUMO

Using auto-erasable Sendai virus vector, we generated ciPSC line. After several passages, virus was not present in ciPSCs by RT-PCR. ciPSCs from canine PBMCs had pluripotent state, differentiated all three germ layers in vitro, and had normal 78 XX karyotype. These results proved that PBMCs were one of the good cell sources to generate ciPSC lines from companion and patient dogs.


Assuntos
Cães , Células-Tronco Pluripotentes Induzidas/fisiologia , Leucócitos Mononucleares/fisiologia , Cultura Primária de Células , Vírus Sendai/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular Transformada , Transformação Celular Viral/genética , Reprogramação Celular/genética , Feminino , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Cariótipo , Leucócitos Mononucleares/citologia , Cultura Primária de Células/métodos , Cultura Primária de Células/veterinária , Vírus Sendai/genética
16.
Mem Inst Oswaldo Cruz ; 115: e190405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187327

RESUMO

BACKGROUND: High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer. Among them, types 16 and 18 are the most prevalent worldwide. The HPV genome encodes three oncoproteins (E5, E6, and E7) that possess a high transformation potential in culture cells when transduced simultaneously. In the present study, we analysed how these oncoproteins cooperate to boost key cancer cell features such as uncontrolled cell proliferation, invasion potential, and cellular redox state imbalance. Oxidative stress is known to contribute to the carcinogenic process, as reactive oxygen species (ROS) constitute a potentially harmful by-product of many cellular reactions, and an efficient clearance mechanism is therefore required. Cells infected with HR-HPVs can adapt to oxidative stress conditions by upregulating the formation of endogenous antioxidants such as catalase, glutathione (GSH), and peroxiredoxin (PRX). OBJECTIVES: The primary aim of this work was to study how these oncoproteins cooperate to promote the development of certain cancer cell features such as uncontrolled cell proliferation, invasion potential, and oxidative stress that are known to aid in the carcinogenic process. METHODS: To perform this study, we generated three different HaCaT cell lines using retroviral transduction that stably expressed combinations of HPV-18 oncogenes that included HaCaT E5-18, HaCaT E6/E7-18, and HaCaT E5/E6/E7-18. FINDINGS: Our results revealed a statistically significant increment in cell viability as measured by MTT assay, cell proliferation, and invasion assays in the cell line containing the three viral oncogenes. Additionally, we observed that cells expressing HPV-18 E5/E6/E7 exhibited a decrease in catalase activity and a significant augmentation of GSH and PRX1 levels relative to those of E5, E6/E7, and HaCaT cells. MAIN CONCLUSIONS: This study demonstrates for the first time that HPV-18 E5, E6, and E7 oncoproteins can cooperate to enhance malignant transformation.


Assuntos
Transformação Celular Viral/genética , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 18/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Linhagem Celular Tumoral/virologia , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Oxirredução
17.
BMC Med Genet ; 21(1): 48, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32138690

RESUMO

BACKGROUND: This study was aimed to investigate the regulatory role of microRNA-210 (miRNA-210) on the progression of liver cancer and Hepatitis B virus (HBV)-associated liver cancer. METHODS: The expression of miRNA-210 was detected in liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells by qRT-PCR. MiRNA-210 was silenced in HepG2 and HepG2.2.15 cells by the transfection of miRNA-210 inhibitor. The cell viability and apoptosis was detected by MTT assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The protein expression of EGR3 was detected by Western blot. The regulatory relationship between EGR3 and miRNA-210 was predicted by TargetScan and identified by Dual luciferase reporter gene assay. RESULTS: MiRNA-210 was overexpressed in the liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells (P < 0.05). Silencing of miRNA-210 inhibited the viability and promoted the apoptosis of HepG2 and HepG2.2.15 cells (P < 0.05). EGR3 was a target of miRNA-210, which was down-regulated in the liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells (P < 0.05). Silencing of miRNA-210 increased the mRNA and protein expression of EGR3 (P < 0.05). Silencing of EGR3 reversed the anti-tumor effect of miRNA-210 inhibitor on HepG2 and HepG2.2.15 cells (P < 0.05). CONCLUSIONS: Silencing of miRNA-210 inhibits the progression of liver cancer and HBV-associated liver cancer via up-regulating EGR3.


Assuntos
Carcinoma Hepatocelular/genética , Transformação Celular Viral/genética , Proteína 3 de Resposta de Crescimento Precoce/genética , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/genética , MicroRNAs/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Células Cultivadas , Progressão da Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade
18.
Folia Microbiol (Praha) ; 65(3): 439-449, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32072398

RESUMO

Based on seroepidemiological studies, human herpes simplex virus types 1 and 2 (HSV-1, HSV-2) are put in relation with a number of cancer diseases; however, they do not appear to play a direct role, being only considered cofactors. Their ability to transform the cells in vitro could be demonstrated experimentally by removing their high lytic ability by a certain dose of UV radiation or by photoinactivation in the presence of photosensitizers, such as neutral red or methylene blue, or culturing under conditions suppressing their lytic activity. However, recent studies indicate that UV irradiated or photoinactivated HSV-1 and HSV-2, able to transform non-transformed cells, behave differently in transformed cells suppressing their transformed phenotype. Furthermore, both transforming and transformed phenotype suppressing activities are pertaining only to non-syncytial virus strains. There are some proposed mechanisms explaining their transforming activity. According to the "hit and run" mechanism, viral DNA induces only initiation of transformation by interacting with cellular DNA bringing about mutations and epigenetic changes and is no longer involved in other processes of neoplastic progression. According to the "hijacking" mechanism, virus products in infected cells may activate signalling pathways and thus induce uncontrolled proliferation. Such a product is e.g. a product of HSV-2 gene designated ICP10 that encodes an oncoprotein RR1PK that activates the Ras pathway. In two cases of cancer, in the case of serous ovarian carcinoma and in some prostate tumours, virus-encoded microRNAs (miRNAs) were detected as a possible cofactor in tumorigenesis. And, recently described herpes virus-associated growth factors with transforming and transformation repressing activity might be considered important factors playing a role in tumour formation. And finally, there is a number of evidence that HSV-2 may increase the risk of cervical cancer after infection with human papillomaviruses. A similar situation is with human cytomegalovirus; however, here, a novel mechanism named oncomodulation has been proposed. Oncomodulation means that HCMV infects tumour cells and modulates their malignant properties without having a direct effect on cell transformation.


Assuntos
Transformação Celular Viral/genética , Infecções por Herpesviridae/complicações , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/patogenicidade , Neoplasias/virologia , DNA Viral/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Humanos
19.
Int J Oral Sci ; 12(1): 3, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911577

RESUMO

High-risk human papillomaviruses (HPVs) are involved in the development of several human cancers, including oropharyngeal squamous cell carcinomas. However, many studies have demonstrated that HPV alone is not sufficient for the oncogenic transformation of normal human epithelial cells, indicating that additional cofactors are required for the oncogenic conversion of HPV-infected cells. Inasmuch as chronic inflammation is also closely associated with carcinogenesis, we investigated the effect of chronic exposure to tumor necrosis factor α (TNFα), the major proinflammatory cytokine, on oncogenesis in two immortalized oral keratinocyte cell lines, namely, HPV16-immortalized and human telomerase reverse transcriptase (hTERT)-immortalized cells. TNFα treatment led to the acquisition of malignant growth properties in HPV16-immortalized cells, such as (1) calcium resistance, (2) anchorage independence, and (3) increased cell proliferation in vivo. Moreover, TNFα increased the cancer stem cell-like population and stemness phenotype in HPV16-immortalized cells. However, such transforming effects were not observed in hTERT-immortalized cells, suggesting an HPV-specific role in TNFα-promoted oncogenesis. We also generated hTERT-immortalized cells that express HPV16 E6 and E7. Chronic TNFα exposure successfully induced the malignant growth and stemness phenotype in the E6-expressing cells but not in the control and E7-expressing cells. We further demonstrated that HPV16 E6 played a key role in TNFα-induced cancer stemness via suppression of the stemness-inhibiting microRNAs miR-203 and miR-200c. Overexpression of miR-203 and miR-200c suppressed cancer stemness in TNFα-treated HPV16-immortalized cells. Overall, our study suggests that chronic inflammation promotes cancer stemness in HPV-infected cells, thereby promoting HPV-associated oral carcinogenesis.


Assuntos
Carcinoma de Células Escamosas/genética , Papillomavirus Humano 16/metabolismo , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Boca/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Telomerase/genética , Fator de Necrose Tumoral alfa/metabolismo , Carcinogênese/genética , Carcinogênese/imunologia , Carcinoma de Células Escamosas/patologia , Transformação Celular Viral/genética , Regulação da Expressão Gênica , Genes Virais , Papillomavirus Humano 16/genética , Humanos , MicroRNAs/genética , Boca/virologia , Neoplasias Bucais/patologia , Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Telomerase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
20.
Mem. Inst. Oswaldo Cruz ; 115: e190405, 2020. graf
Artigo em Inglês | LILACS, BNUY, UY-BNMED | ID: biblio-1091247

RESUMO

BACKGROUND High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer. Among them, types 16 and 18 are the most prevalent worldwide. The HPV genome encodes three oncoproteins (E5, E6, and E7) that possess a high transformation potential in culture cells when transduced simultaneously. In the present study, we analysed how these oncoproteins cooperate to boost key cancer cell features such as uncontrolled cell proliferation, invasion potential, and cellular redox state imbalance. Oxidative stress is known to contribute to the carcinogenic process, as reactive oxygen species (ROS) constitute a potentially harmful by-product of many cellular reactions, and an efficient clearance mechanism is therefore required. Cells infected with HR-HPVs can adapt to oxidative stress conditions by upregulating the formation of endogenous antioxidants such as catalase, glutathione (GSH), and peroxiredoxin (PRX). OBJECTIVES The primary aim of this work was to study how these oncoproteins cooperate to promote the development of certain cancer cell features such as uncontrolled cell proliferation, invasion potential, and oxidative stress that are known to aid in the carcinogenic process. METHODS To perform this study, we generated three different HaCaT cell lines using retroviral transduction that stably expressed combinations of HPV-18 oncogenes that included HaCaT E5-18, HaCaT E6/E7-18, and HaCaT E5/E6/E7-18. FINDINGS Our results revealed a statistically significant increment in cell viability as measured by MTT assay, cell proliferation, and invasion assays in the cell line containing the three viral oncogenes. Additionally, we observed that cells expressing HPV-18 E5/E6/E7 exhibited a decrease in catalase activity and a significant augmentation of GSH and PRX1 levels relative to those of E5, E6/E7, and HaCaT cells. MAIN CONCLUSIONS This study demonstrates for the first time that HPV-18 E5, E6, and E7 oncoproteins can cooperate to enhance malignant transformation.


Assuntos
Humanos , Transformação Celular Viral/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 18/metabolismo , Oxirredução , Regulação Neoplásica da Expressão Gênica , Sobrevivência Celular , Linhagem Celular Tumoral/virologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...